Rapid VLIW Processor Customization for Signal Processing Applications Using Combinational Hardware Functions
نویسندگان
چکیده
This paper presents an architecture that combines VLIW (very long instruction word) processing with the capability to introduce application-specific customized instructions and highly parallel combinational hardware functions for the acceleration of signal processing applications. To support this architecture, a compilation and design automation flow is described for algorithms written in C. The key contributions of this paper are as follows: (1) a 4-way VLIW processor implemented in an FPGA, (2) large speedups through hardware functions, (3) a hardware/software interface with zero overhead, (4) a design methodology for implementing signal processing applications on this architecture, (5) tractable design automation techniques for extracting and synthesizing hardware functions. Several design tradeoffs for the architecture were examined including the number of VLIW functional units and register file size. The architecture was implemented on an Altera Stratix II FPGA. The Stratix II device was selected because it offers a large number of high-speed DSP (digital signal processing) blocks that execute multiply-accumulate operations. Using the MediaBench benchmark suite, we tested our methodology and architecture to accelerate software. Our combined VLIW processor with hardware functions was compared to that of software executing on a RISC processor, specifically the soft core embedded NIOS II processor. For software kernels converted into hardware functions, we show a hardware performance multiplier of up to 230 times that of software with an average 63 times faster. For the entire application in which only a portion of the software is converted to hardware, the performance improvement is as much as 30X times faster than the nonaccelerated application, with a 12X improvement on average.
منابع مشابه
طراحی و ساخت یک سیستم تشخیص خواب آلودگی راننده مبتنی بر پردازشگر سیگنال TMS320C5509A
Every year, many people lose their lives in road traffic accidents while driving vehicles throughout the world. Providing secure driving conditions highly reduces road traffic accidents and their associated death rates. Fatigue and drowsiness are two major causes of death in these accidents; therefore, early detection of driver drowsiness can greatly reduce such accidents. Results of NTSB inves...
متن کاملEvaluating VLIW and SIMD Architectures for DSP and Multimedia Applications
Digital signal processing (DSP) and multimedia applications are expected to be the dominant workloads on future computer systems. In this paper, we evaluate the performance of a very long instruction word (VLIW) processor using Texas Instruments Inc.’s TMS320C6x and a single-instruction multiple-data (SIMD) processor using Intel’s Pentium II processor (with MMX) on a set of benchmarks. Our benc...
متن کاملEvaluating Signal Processing and Multimedia Applications on SIMD, VLIW and Superscalar Architectures
This paper aims to provide a quantitative understanding of the performance of DSP and multimedia applications on very long instruction word (VLIW), single instruction multiple data (SIMD), and superscalar processors. We evaluate the performance of the VLIW paradigm using Texas Instruments Inc.’s TMS320C62xx processor and the SIMD paradigm using Intel’s Pentium II processor (with MMX) on a set o...
متن کاملDigital Signal Processing Algorithm Optimization for Vliw Digital Signal Processors (invited)
Digital signal processors with Harvard architecture are being gradually replaced by digital signal processors with VLIW (Very Long Instruction Word) architecture for high-end applications. Owing to exploiting the principles of parallel instruction processing and parallel data processing, the new architecture provides the calculation power to implement complex algorithms of digital signal proces...
متن کاملDesign and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006